

TEK-FLux 1400C Utility Electromagnetic Flow Meter

Instruction Manual

Document Number: IM-1400C

Battery Powered

NSF

www.tek-trol.com

www.tek-trol.com

NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product. For technical assistance, contact Customer Support 796 Tek-Drive Crystal Lake, IL 60014 USA Tel: +1 847 857 6076

© COPYRIGHT Tek-Trol LLC 2022

No part of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, manual, or otherwise, or disclosed to third parties without the express written permission. The information contained in this manual is subject to change without notice.

Table of Contents

1	Safe	ty Instructions	3
	1.1	Intended Use	3
	1.2	Safety Instructions from the Manufacturer	3
	1.2.1	Disclaimer	3
	1.2.2	Product Liability and Warranty	3
	1.2.3	Information Concerning the Documentation	3
	1.3	Safety Precautions	3
	1.4	Handling and Storage Instructions	4
	1.4.1	Handling Instructions	4
	1.4.2	Storage	4
	1.4.3	Nameplate	4
2	Prod	uct Description	5
-	2.1	Introduction	5
	2.2	Measuring Principle and Operation	5
	2.3	Flow Computation	6
	2.4	Battery Description	7
	2.4.1	Features	7
	2.4.2	Battery Specifications	7
	2.4.3	Applications	7
	2.5	Specifications	8
	2.6	Flow Range	9
	2.7	Dimensional Drawings	9
	2.7.1	Battery Powered	9
	2.7.2	Line Powered	. 10
	2.8	Model Chart	13
z	Insta	allations	14
5	3 1	Pre-Installations Checks	14
	3.2	Installation of Flow Tube	
	3.2.1	Selection of Mounting Locations	14
	3.2.2	Typical Inline Mounting arrangements	.16
	3.2.3	Tightening of the flange bolts	. 16
	3.2.4	Flow Tube Local Earthing / Grounding	. 17
	3.2.5	Checking for sealing	. 17
	E la si		10
4	Elect	rical instructions	. 18
	4.1	Instructions	18
	4.2	Recommended Wiring Procedure for Battery	20
	4.2.1	Line Powered Wiring	. 20
	4.3	After making all the connections	
5	Ope	rations	. 21
	5.1	Display Setting (Battery Powered)	21
	5.1.1	Boot Up	. 21
	5.1.2	Run Time	. 21
	5.2	Interface (Line Powered)	22
	5.2.1	Understanding the Menu operations	. 23

	5.2.2	Menu and Modes of operation	24			
	5.2.3	Info Mode	25			
	5.2.4	Clear Mode	26			
	5.2.5	Program Mode	27			
	5.2.6	Configuration Mode	27			
	5.2.7	Flow Settings	28			
	5.2.8	Display Settings	29			
	5.2.9	Display Screens (Unidirectional Flow)	30			
	5.2.1	0 Display Screens (Bidirectional Flow)	31			
	5.2.1	1 Communication Settings	32			
	5.2.1	2 Relay Output Settings	33			
	5.2.1	3 Pulse Output Settings	34			
	5.2.1	4 Digital Input Settings	35			
	5.2.1	5 Analog Output Settings	35			
	5.2.1	6 Diagnostics Mode	36			
	5.2.1	7 Batching Mode	37			
	5.2.1	8 Calibration Mode	38			
ļ	5.3	Operational Precautions	38			
ļ	5.4	Battery Setup	39			
r	Dura	Made Line Deward	44			
6	Kun	Niode Line Powered	41			
	6.I C 2	KUN MODE	41			
	6.Z	Info Wiode	42			
	0.3 C 4	Clear Mode	43			
	0.4 C F	Program Wode	44 45			
	0.5	Conliguration Mode	45			
	0.0	Flow Setting	40			
	0./ C 0	Display Setting	47			
	0.8	Display Screens: Unidirectional Flow	48			
7	Run	Mode Battery Powered	49			
	7.1	Run Mode	49			
	7.2	Alerts	49			
	7.3	Setting value and shifting cursor for Battery Powered	50			
	7.4	Entering Config Menu for Battery Powered	51			
	7.5	Config Menu for Battery Powered				
	7.6	Flow Zero	54			
	7.7	Zero Calibration for Battery Powered	55			
Q	Mon	u Tree for Battery Dowerod	56			
0	IVICI		50			
9	Trou	bleshooting	57			
10 Annexure						
	10.1	Annexure 1: Modbus Table	57			

1 Safety Instructions

1.1 Intended Use

Tek-Flux 1400C Utility Electromagnetic Flow Meter is widely used in high-pressure applications with highly accurate and reliable measurements.

1.2 Safety Instructions from the Manufacturer

1.2.1 Disclaimer

The manufacturer will not be held accountable for any damage that happens by using its product, including, but not limited to, direct, indirect, or incidental and consequential damages. Any product purchased from the manufacturer is warranted by the relevant product documentation and our Terms and Conditions of Sale. The manufacturer has the right to modify the content of this document of any time with any reason without prior notice and will not be answerable for the possible consequence of changes.

1.2.2 Product Liability and Warranty

The operator shall have authority for the suitability of the device for the specific application. The manufacturer accepts no accountability for the consequences of misuse by the operator. A wrong installation or operation of the devices (systems) will cause the warranty to be void. The respective Terms and Conditions of Sale, which forms the basis for the sales contract, shall also apply.

1.2.3 Information Concerning the Documentation

To prevent any injury to the operator or damage to the device, it is essential to read the information in this document and the applicable national standard safety instructions. This operating manual consists of all the information that is required in various stages, such as product identification, incoming acceptance and storage, mounting, connection, operation and commissioning, troubleshooting, maintenance, and disposal.

1.3 Safety Precautions

You must read these instructions carefully before installing and commissioning the device. These instructions are an essential part of the product and must be kept for future reference. Only by observing these instructions, optimum protection of both personnel and the environment, as well as safe and fault-free operation of the device can be ensured. For additional information that is not discussed in this manual, contact the manufacturer. The following safety symbol marks are used in this operation manual and on the instrument.

Indicates a potentially hazardous situation which, if not avoided, could result in death or severe injury

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

1 NOTE

Indicates that operating the hardware or software in this manner may damage it or lead to system failure.

1.4 Handling and Storage Instructions

The following information applies to the Tek-Flux 1400C Utility Electromagnetic Flow Meter.

1.4.1 Handling Instructions

- Do not lift the Flow Meter by the top-mounted Transmitter.
- Flow Meter of size 8"(200mm) and above always lift using eye bolts. Do not lift by its casing.
- Do not drag the Flow Tube with its lining facing the ground. It will damage the lining.
- Do not roll the Flow Tube over its flanges. It will damage the flanges along with Transmitter if it hits the ground on rolling.
- Always rest the Flow Meter only in its upright position on the pedestals provided and not on its casing.

1.4.2 Storage

If this product is to be stored for an extended period of time before installation, take the following precautions:

- Store your product in the manufacturer's original packing used for shipping.
- The storage location should comply with the following requirements:
 - Free from rain and water
 - Free from vibration and impact shock
 - At room temperature with minimal temperature and humidity variation
- Before storing a used flow meter, remove any fluid from the flow meter line completely. Properties of the instrument can change when stored outdoors.

1.4.3 Nameplate

Utili	Tek-Flux 1400C ty Electromagnetic Flow Meter	$\overline{\ }$
Model Meter Factor K Flow Range Accuracy Lining Mtl. Voltage S/N	Tek-Flux 1400C Size Work. Press. Uork. Temp. Electrode Mtl. Protection	
	Crystal Lake, IL 60014 USA www.tek-trol.com	(0

2 Product Description

2.1 Introduction

Tek-Flux 1400C Utility Electromagnetic Flow Meter is widely used for high-pressure applications with highly accurate and reliable measurements. Tek-Flux 1400C is used to measure flow rate for various conductive liquids. This Inline Battery-Powered Magmeter is specially designed for applications where availability of electricity and power supply is unavailable. The Tek-Flux 1400C Magmeter provides 5 years battery life, which minimize the maintenance and enhance the productivity of smart measurements in field instruments.

2.2 Measuring Principle and Operation

Tek-Flux 1400C Utility Electromagnetic Flow Meter operates on the principle of Faraday's Law of Electromagnetic Induction. It describes the relationship between an electrical conductor and the voltage, which is generated by magnetic field. The induced voltage is directly proportional to the velocity of fluid flowing through a magnetic field and passes through the transmitter. The transmitter converts this voltage into a quantifiable flow velocity, where volumetric flow rate of the fluid is determined by the velocity.

Fig 1: Tek-Flux 1400C Utility Electromagnetic Flow Meter

In an Electromagnetic Flow Meter, a magnetic field is generated by a pair of diametrically placed electrical coils. These electrical coils are mounted externally to the flow tube. As the conductive liquid passes through this Electromagnetic field, the force of the magnetic field causes the negatively and positively charged particles of the liquid to separate. This separation causes an induced voltage between the electrodes and the sensor. This induced voltage is directly proportional to the velocity and perpendicular to both the liquid flow and the electromagnetic field direction. The sensed voltage is further processed by the transmitter to provide a standardized output signal or displayed in an appropriate engineering unit.

2.3 Flow Computation

The flux density of the electromagnetic field and the distance between the electrodes are constant. Therefore, the induced voltage is the function of liquid velocity as below:

$$\mathbf{E} = \mathbf{K} \times \mathbf{B} \times \mathbf{V} \times \mathbf{D} - \mathbf{1}$$

Where,

E = Induced Voltage

K = Flow tube Constant

B = Magnetic Field Strength

v = Mean Flow Velocity

D = distance between Electrode

Volume flow is calculated by following equation:

$$\mathbf{Q} = \overline{\mathbf{V}} \times \mathbf{D}^2 \times \pi/4 - \mathbf{Q}^2$$

Therefore, From Equation 1 and 2:

$$\mathbf{Q} = \frac{\mathbf{E} \times \mathbf{D} \times \mathbf{\pi}}{\mathbf{K} \times \mathbf{B} \times \mathbf{4}}$$

Hence, induced voltage or e.m.f is not affected by the physical properties of liquids like temperature, pressure, density along with conductivity above the minimum threshold level of measured liquid. When the pipe is completely full of liquid, the flow meter provides reliable and accurate measurements.

The electromagnetic field coil assembly is excited by the pulsed DC technique, which eliminates the noise and provides zero correction automatically.

Fig 2: Measuring Principle of Tek-Flux 1400C

2.4 Battery Description

2.4.1 Features

- High and stable operating voltage.
- Excessive power and energy for the whole battery life.
- Superior drain capability.
- Higher power applications.
- Self-discharge rate is Low (less than 1% after 1 year of storage at 68°F).
- Battery life higher than 10 years, depending on the application.
- Hermetic glass-to-metal sealing.
- Eliminates leakage.
- Non-flammable electrolyte.
- Operation Safety.

2.4.2 Battery Specifications

Product Type	Cylindrical, Non-Rechargeable, Cell, D-Site
Chemistry	LiSOCI ₂
Voltage (Nominal)	3.6V
Capacity (Nominal)	19.0Ah
Certifications	UL 1642, UN 38.3
Class 9	Yes
Operating Temperature	-40°F to 160°F
Storage Temperature	-40°F to 160°F

2.4.3 Applications

Tek-Flux 1400C Utility Electromagnetic Flow Meter can be successfully deployed in a wide range of industrial liquid flow measurement applications:

- Chemical and Process Industries.
- Fertilizer Industries.
- Pharmaceutical Industries.
- Sugar and Beverage Industries.
- Paper and Pulp Industries.
- Aluminium and Steel Industries.
- Mining and Dredging Industries.
- Polymer Industries.
- Water and Wastewater Management.

2.5 Specifications

• Battery Powered

Accuracy	±0.5% (Standard)
Repeatability	±0.2% of Span
Nominal Diameter	2" to 12" (50 to 300mm)
Nominal Pressure	150# ANSI or 300# ANSI Flange
Working Tomporatura	Direct: -40 to 250°F (-40 to 120°C)
	Remote: -40 to 350°F (-40 to 180°C)
Electrode material	316 SS
Sensor Lining	Polypropylene
Display Version	Integral (Optional: Remote)
Measuring tube material	SS 304 Carbon Steel
Transmitter Material	Die Cast Aluminium
End connection	ANSI Flange
Measuring Range	0.7 to 39ft/s (0.2 to 12 m/s) Bidirectional
Output	Pulse and RS485 Modbus
Power Supply	Battery Powered 5 years' Battery Life
Protection Class for Sensor	Std. IP 65
Protection Class for Transmitter	IP 67
Installation	Inline flanged

• Line Powered

Accuracy	±0.5% (Standard); Optional 0.3%			
Measuring Range	0.2 to 12 m/sec Bi-directional			
Repeatability	±0.2% of Span			
Process Pressure	150# ANSI or 300# ANSI Flange			
	Integral: -40 to 250°F (-40 to 120°C)			
Process remperature	Remote: -40 to 350°F (-40 to 180°C)			
Operating Temperature	-40°F to 131°F (-40°C to 55°C)			
Operating Humidity	5-95% RH non-condensing			
Size	½" to 28" (10mm to 700mm)			
Output	4-20mA, Pulse, HART Modbus RS485			
Power Supply	16 to 60VDC or 80 to 300VAC/DC			
Protection Class	IP65 (Standard),			
	IP68 (Optional for Flow Tube with Remote Transmitter)			
End Connection	ANSI Flange			
Electrode Material	316 SS			
Measuring Tube Material	SS304			
Housing Material	Carbon Steel			
Sensor Lining	Polypropylene			
Display Version	Integral or Remote			
Display Type	16 characters x 2 row LCD, 5 Digit Flow ra	ate and 8 Digit Totalizer		
	Flow Rate	Totalizer		
Units	LPS, LPM, LPH, LPD L, MI, m ³			
	Mlps, Mlpm, Mlph, Mlpd	MI		

	cc/s, cc/m, cc/h, cc/d,	L, Ml, cc, m ³	
	m³/s, m³/m, m³/h, m³/d	L, Ml, m³	
	kg/s, kg/m, kg/h, kg/d	kg, t	
	t/s, t/m, t/h, t/d	Т	
	gps, gpm, gph, gpd	G, ft ³	
	Mgps, Mgpm, Mgph, Mgpd	Mg	
	lgps, lgpm, lgph, lgpd	lg, ft ³	
	lMgps, lMgpm, lMgph, lMgpd	lMg	
	ft³/s, ft³/m, ft³/h, ft³/d	g, lg, ft ³	
	lb/s, lb/m, lb/h, lb/d	lb	
	bbl/d, bbl/h, bbl/s	bbl	
Cable Length	30 Ft (Standard)		
	Up to 150 Ft Maximum		
Terminal Connector	18 AWG to 22 AWG wire		

2.6 Flow Range

• Velocity range - 0.7 ft/sec for minimum and 40 ft/sec for maximum

Line Size	USGPM		Size USGPM m³ /hr		LPM		LPS	
in (mm)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
1/2" (15)	0.56	33.61	0.13	7.63	2.12	127.21	0.04	2.11
3/4" (20)	1	59.75	0.23	13.56	3.77	226.15	0.06	3.77
1" (25)	1.56	93.35	0.35	21.19	5.89	353.36	0.1	5.88
1 1/4" (32)	2.55	152.95	0.58	34.91	9.65	578.96	0.16	9.65
1 1/2" (40)	3.98	238.98	0.9	54.28	15.08	904.63	0.25	15.07
2" (50)	6.22	373.4	1.41	84.82	23.56	1413.19	0.39	23.56
2 1/2" (65)	10.52	631.06	2.39	143.28	39.82	2389.2	0.66	39.8
3" (80)	15.93	955.92	3.62	217.08	60.31	3618.55	1.01	60.3
4"(100)	24.89	1493.63	5.65	339.24	94.23	5653.99	1.57	94.22
5" (125)	38.9	2333.8	8.84	530.16	147.24	8834.38	2.45	147.24
6" (150)	56.01	3360.66	12.72	763.32	212.03	12721.5	3.53	212.02
8" (200)	99.58	5974.51	22.6	1356	376.93	22616	6.28	376.93
10" (250)	155.59	9335.18	35.2	2112	588.96	35337.5	9.82	588.96
12" (300)	224.04	13442.65	50.89	3053.16	848.1	50886	14.14	848.1

2.7 Dimensional Drawings

2.7.1 Battery Powered

Material of Construction				
Pipe Material	Carbon Steel			
Electrode Material	316 SS			
Flanges	Carbon Steel			
Coil Housing	Carbon Steel			
Flow Transmitter	Die Cast Aluminium			
Liner	Polypropylene			

Figure 3: Battery Powered

Line Size in (mm)	D in. (mm)	B in. (mm)	E in. (mm)	Flange OD	PCD	Ø A X NO. OF HOLES
2"(50)	8" (200)	9 1/2" (239)	7" (175)	6" (150)	4 3/4" (121)	Ø19 X 4
2 1/2" (65)	8" (200)	9 3/4" (245)	7 1/2" (187)	7 1/4" (180)	5 1/2" (140)	Ø19 X 4
3" (80)	8" (200)	10 1/8" (253)	8 1/8" (203)	7 1/2" (190)	6" (152)	Ø19 X 4
4"(100)	10" (250)	10 3/4" (268)	9 1/4" (234)	9 1/4" (230)	7 1/2" (190)	Ø19 X 8
5" (125)	10" (250)	11 1/2" (287)	10 3/4" (272)	10 1/4" (255)	8 3/4"(216)	Ø23 X 8
6" (150)	12" (300)	12 1/4" (305)	12 1/4" (308)	11 1/4" (280)	9 1/2" (241)	Ø23 X 8
8" (200)	14" (350)	13 1/4"(331)	14 1/4" (359)	13 3/4" (345)	12" (298)	Ø23 X 8
10" (250)	16" (400)	14 1/4" (358)	16 1/2"(413)	16 1/4" (405)	14 1/2" (362)	Ø25 X 12
12" (300)	20" (500)	14 3/4" (368)	19 1/2" (485)	19 1/2" (485)	17 1/4" (432)	Ø25 X 12

2.7.2 Line Powered

• Flow Tube with Metal body

Fig 4: Integral Type

Fig 5: Remote Type	Fig	Type
--------------------	-----	------

Line Size in (mm)	A in (mm)	B in (mm)	C in (mm)	D in (mm)	E in (mm)	F in (mm)
½" (15)	2 ¼" (58)	9 ¼" (233)	6 ½" (165)	8" (200)	4 ½" (115)	6 ½" (165)
³⁄₄" (20)	2 ¾" (70)	9 ¾" (245)	7 ½" (190)	8" (200)	5 ¼" (140)	7" (177)
1" (25)	2 ¾" (73)	9 7/8" (248)	7 ¾" (195)	8" (200)	5 ¾" (145)	7 ¼" (180)
2" (50)	3 ½" (88)	10 ½" (263)	9" (225)	8" (200)	7" (175)	7 ¾" (195)
2 ½" (65)	3 ¾" (94)	10 ¾" (269)	9 ½" (237)	8" (200)	7 ½" (187)	8" (201)
3" (80)	4 1/8" (104)	11" (277)	10 1/8"(253)	8" (200)	8 1/8" (203)	8 ¼" (209)
4" (100)	4 ¾" (117)	11 ¾" (292)	11 ¼" (284)	10"(250)	9 ¼" (234)	9" (224)
5" (125)	5 ½" (136)	12 ½" (311)	12 ¾" (322)	10"(250)	10 ¾" (272)	9 ¾" (243)
6" (150)	6 ¼" (154)	13 ¼" (329)	14 ¼" (358)	12" (300)	12 ¼" (308)	10 ½" (261)
8" (200)	7 ¼" (180)	14 ¼" (355)	16 ¼" (409)	14" (350)	14 ¼" (359)	11 ½" (287)
10"(250)	8 ¼" (207)	15 ¼" (382)	18 ½" (463)	16"(400)	16 ½" (413)	12 ½" (314)

12" (300)	9 ¾" (243)	15 ¾" (392)	20 ½" (510)	20" (500)	19 ½" (485)	13" (324)
14" (350)	10 ¾" (268)	17" (423)	22 ¾"(567)	20" (500)	21 ½" (535)	14 ¼" (355)
16"(400)	12" (298)	18" (448)	24 ¾" (621)	24" (600)	23 ¾" (595)	15 ¼" (380)
18" (450)	12 ¾" (318)	19" (474)	26 ¾" (666)	24" (600)	25 ½" (635)	16 ¼" (406)
20" (500)	14" (350)	20" (499)	29" (724)	24" (600)	28" (700)	17 ¼" (431)
24" (600)	16 ¼" (408)	23 ¼" (582)	34 ½" (865)	24" (600)	32 ½" (815)	20 ½" (514)
28" (700)	18" (448)	23 ½" (590)	35 ¼" (883)	28" (700)	35 ¾" (895)	20 ¾" (522)
32" (800)	20 ¼" (508)	26" (650)	40" (1000)	32" (800)	40 ½" (1015)	23 ¼" (582)
36" (900)	22 ¼" (558)	27 ¼" (683)	42 ¾" (1066)	36" (900)	44 ½" (1115)	24 ½" (615)
40" (1000)	24 ¼" (615)	29" (724)	48 ½" (1214)	40" (1000)	49 ¼" (1230)	26 ¼" (655)

Approximate Weight Chart								
Line Size (inch)	Line Size (mm)	Net Weight (Ib)	Net Weight (kg)	Gross Weight with packaging (Ib)	Gross Weight with packaging (kg)	Box Dimension in inch (for 1 Magmeter)	Box Dimension in mm (for 1 Magmeter)	
1/2	15	11	5	26	12			
3/4	20	13	6	26	12			
1	25	13	6	26	12			
1.25	32	18	8	31	14			
1.5	40	18	8	31	14			
2	50	22	10	35	16	23.6*15.4*17.4	600*390*440	
2.5	65	29	13	42	19			
3	80	33	15	46	21			
4	100	44	20	64	29			
5	125	57	26	70	32			
6	150	68	31	84	38			
8	200	99	45	154	70	24.6*23.2*22.8	625*540*580	
10	250	136	62	209	95	26.8*23.4*25.2	675*590*635	
12	300	211	96	286	130	29.7*26.2*28.2	750*660*710	
14	350	253	115	330	150	34.7*27.3*28.6	875*690*720	
16	400	341	155	418	190	35.7*32.5*31.74	900*820*800	

18	450	352	160	440	200	36.9*31.4*32.7	930*790*825
20	500	506	230	616	280	37.7*34.5*32.9	950*870*830
24	600	682	310	814	370	44.4*41.26*33.73	1120*1040*850
28	700	836	380	990	450	45.8*39.7*36.5	1155*1000*920
32	800	1122	510	1298	590	46.4*46.4*51.42	1170*1170*1050
36	900	1320	600	1540	700	50.8*50.8*46.0	1280*1280*1160
40	1000	1892	860	2134	970	64.7*57.2*48.4	1630*1440*1220

2.8 Model Chart

Example	Tek-Flux 1400C	080	1	S	SS	1	2	PY	NSF	Tek-Flux 1400C-80-1-S-SS-1-2-PY-NSF
Series	Tek-Flux 1400C									Utility Magmeter
		15								1/2"
		25								1"
		40								1 ½"
		50								2"
		65								2 ½"
		80								3"
		100								4"
Size		150								6"
		200								8"
		250								10"
		300								12"
		450								18"
		500								20"
		600								24"
		700								28"
_			1							Direct Mount
Transmitter			2							Remote Mount (comes with 30 ft. of cable)
				В						Pulse, Modbus RS-485 (Battery Powered)
Output				s						4-20mA HART, Pulse, Modbus RS-485
					SS					316 SS
Electrodes					х					Consult Factory
Process						1				150# ANSI Flange
Connection						3				300# ANSI Flange
Power Supply							1			Battery

				2			16 to 60 VDC
				3			80 to 300 VAC/VDC
Liner					ΡΥ		Polypropylene
						IP68	IP68 Submersible Sensor Rating (Remote Only)
Options						NSF	NSF Approved
						EA	Extended Accuracy (0.3%)

3 Installations

3.1 Pre-Installations Checks

- Re-confirm the compatibility of the process liquid with the materials of the Flow Tube liner and the electrodes as ordered by you.
 - Confirm the compatibility of all components i.e., if process liquid is a mixture of different components.
 - o Check the compatibility of process liquids that contain harmful contaminants.
 - Note that the severity of corrosion of material is depending upon the temperature and the concentration of the process liquid.
 - Corrosion due to service liquid reduces the life of Flow Meter.
- Ensure that the selected Flow Meter size is suitable for the flow rate to be measured.
- Note that the velocity under normal conditions should be between 0.2 m/s and 12 m/s.
- Confirm that an appropriate Earth pit is available, which is close to the Flow Tube for proper Grounding.

3.2 Installation of Flow Tube

3.2.1 Selection of Mounting Locations

The Tek-Flux 1400C Utility Magmeter must be installed in the pipeline at a point which satisfies the following requirements.

- To avoid erratic measurement results, flow tube must be full of liquid.
- Ensure that the Electrodes axis is horizontal within ±15 degrees.
- Ensure straight pipe lengths on both side of the flow tube (5D at upstream and 3D at downstream from the center of the flow tube).

Fig 8: Straight Run Requirement

• Flow Tube may be installed in horizontal Pipelines preferably, with a slight upward gradient in the direction of flow.

Fig 9: Horizontal Installation

- Never install the flow tube in empty or partially full pipeline.
- Never install the flow tube in vertical pipelines, where the liquid flow direction is downward.

Fig 10: Vertical Installation with Liquid in the downward direction

- The piping layout must be preventing of any air content. The entrained air should be carried out of the flow tube by the liquid flow or by buoyancy at zero flow.
- Ensuring installation location in a way, that water or moisture does not enter the electrical terminations area.
- If the connecting pipeline is not electrically conducting or is lined with insulating material, strap the grounding rings to the detector head flanges at either end.

Fig 11: Strap the Grounding Rings

• Use empty pipe detection option to obtain correct flow status and prevent erratic output for completely draining out the process liquid.

3.2.2 Typical Inline Mounting arrangements

Inline mounting arrangement is shown in figure below.

Fig 12: Inline Mounting

3.2.3 Tightening of the flange bolts

- Apply a thin layer of fresh industrial grease to the threads of the bolts prior to tightening.
- Tighten all the mounting bolts uniformly without any under or over tightening of the bolts.
- Tighten the bolts in a cross-sequence as per the order shown below for few flange sizes.

Fig 13: Tightening of the Flange Bolts

• Use Appropriate torque wench.

3.2.4 Flow Tube Local Earthing / Grounding

- A proper grounding of the Primary Head is essential to ensure proper functioning and accurate measurement of the Flow Meter.
- This ground is the reference ground for measurement and should not introduce any interference into the signal to be measured.
- Use 14AWG wire or higher conductor diameter cable for Earthing.
- To prevent any electrical interferences do not connect the ground of any other heavy electrical equipment to this ground.
- This ground functioning as the safety ground.

Fig 14: Flow Tube Earthing

3.2.5 Checking for sealing

Once the flow tube has been mounted, fill the pipeline preferably with water instead of process liquid for confirmation of leak free mounting.

If even minor leaks are noticed, following instructions are refer:

- Check the axial alignment of the flow tube with the upstream and downstream pipe lengths.
- Cleanliness of gasket.
- Use rating of gasket material and proper tightening of the bolts.
- After eliminating the leakages, allow the process liquid to pass through the pipeline.

4 Electrical Instructions

This section covers all electrical connection requirement. Electrical connection of the device must be carried out by trained; qualified specialists authorized to perform such work by the installation site.

WARNING

- Connect all electrical cables when the power is switched off. If the device does not have switch-off elements, then, overcurrent protection devices, lightning protection and/or energy isolating devices must be provided by the customer.
- The device must be grounded to a spot in accordance with regulations in order to protect personnel against electric shocks.

NOTE

When using the measuring device in hazardous areas, installation must comply with the corresponding national standards and regulations and the Safety Instructions or Installation or Control Drawings.

4.1 Instructions

- The Transmitter is delivered with a cable (pigtail) for making connections, so do not open the cover of the Transmitter.
- Install a junction box with an appropriate IP rating and mount it close to the Flow Meter at a distance that allows terminating the cable of the Transmitter.
- Never extend the Transmitter Cable to join another cable.
- Use ferrules for each wire and crimp the ends of the conductors with appropriate cable lugs.
- Before making various connections, understand how these connections are to be done.
- The Schematic is shown in figure 15.

Fig 15: Connection Diagram

*Note:- Pull Up resistor value from 10K to 25K for measurement of pulse output. do not connect power supply without pull up resistor than may damage the circuit. Measure Output across Pull up resistor.

a. Refer to the following table for a description of the terminals.

Marking	Description				
L/+	110/ 230VAC	24 VDC			
N/-	Neutral	0 VDC			
E	Earth				
RS485 +	Modbus				
RS485 -					
DO1 +	Pulse Output				
DO1 -					
mA DC +	Current output				
mA DC -					

4.2 Recommended Wiring Procedure for Battery

Always install a junction box to make the connections as following:

Table 1: Connection Description

Colour	Signal	Colour	Signal
Red	Open Collector	Yellow	RS485+
Black	0V	Green	RS485-

4.2.1 Line Powered Wiring

Refer to the following table for a description of the terminals.

Marking	Descri	otion	Marking	Description		
L/+	110/ 230VAC	24 VDC	NC			
N /-	Neutral	24 VDC	Р	Relay 2 contacts		
E	Earth		NO			
RS485+	Mad		NC			
RS485-	woul	Jus	Р	Relay 1 contacts		
DI+	Digital input		NO			
DI -			DO1+	Digital autout 1		
mA DC+	Current output		DO1-	Digital Output 1		
mA DC-			DO2+	Digital autout 2		
			DO2-	Digital Output 2		

4.3 After making all the connections

- Confirm that installation has been done and completed, as described in this manual. Then, the Flow Meter is ready for operational use.
- Inspect and confirm that the O-rings and gaskets of the covers of the Transmitter.
- The Junction Box is intact and properly seated, and both the covers are well fastened.
- Allow the process liquid to start flowing through the Flow Tube.
- Ensure that the flow rate is within the specified limits for the Flow Meter.
- The excessive flow rate could damage the Flow Tube lining.
- The Transmitter is delivered in a powered-up condition, duly calibrated, and configured for the range of flow rate measurement as per your requirement.
- The Flow Meter will start indicating the flow rate and the totalized flow values alternately, drive the pulse output, and start communicating over the Modbus.

5 Operations

5.1 Display Setting (Battery Powered)

5.1.1 Boot Up

The Transmitter is delivered in a powered-up condition and hence you will not normally see this screen, except when connecting a replacement battery.

5.1.2 Run Time

The display indicates the parameter unit followed by the value of the flow rate and the totalised flow, respectively. This repeats in a scrolled manner. The example below considers barrels and barrels/day.

5.2 Interface (Line Powered)

The user Interface comprises of backlit LCD readout in a configuration 2 rows of 16 characters each, and a set of three tactile keys. The Flowmeter has different modes, and the LCD displays information relevant to each of the four modes - Run, Program, Info and Clear respectively.

The tactile keys in conjunction with the LCD, enable switching between different modes, reading static information and runtime values, setting and programming new values and selecting between certain functional options. This process of navigation takes you through different Screens - each Screen being a collection of information relevant to that particular Screen. The Screens are part of an internal Menu structure.

To help you navigate through the above Menu, it is useful to understand the nature of the actions of the three tactile switches.

- Move to the next option within a Menu level
- Increment the value of the digit by one
- Move to the next value of a parameter

- Move to the previous option within a Menu level
- Decrement the value of the digit by one
- Move to the previous value of a parameter

- Move to the right digit
- Move from the rightmost digit to the leftmost

E ENTER key

- Select the option presently being displayed
- Select the parameter presently being displayed for viewing and/or editing
- Set the value presently being displayed

5.2.1 Understanding the Menu operations

Please read this section before trying to operate the tactile switches to navigate through the Menu. The 6400 Menu has the following structure. At power ON, the Transmitter LCD momentarily indicates

- The Flowmeter Model, then
- The Software Version number, then
- The RUN mode indicating the Flow rate, Totalized flow and Flow velocity depending on which parameters have been configured to be displayed.

Hit the ENTER key first to access the 4 main functions using the UP and DOWN keys: Run/ Program/ Info and Clear.

Simple explanation of how to navigate

5.2.2 Menu and Modes of operation

- ▲ Diagnostic messages in place of flow rate and velocity value a. 'Empty Pipe'
 - b. 'High Flow' (>12m/s)

5.2.3 Info Mode

 \triangle 'EcoMag 6420' displayed In case of model EcoMag 6420 \triangle Applicable when Communication 1s enabled

5.2.4 Clear Mode

- A Password=0741
- ${\ensuremath{\bigtriangleup}}$ Totaliser value can be cleared
- ON & RUN Hours, and Power Interruptions count can be cleared

5.2.5 Program Mode

⚠ if Batching is enabled

5.2.6 Configuration Mode

5.2.7 Flow Settings

For ON Size. Flow & Totaliser Unit options refer to the Specification chapter.

5.2.8 Display Settings

5.2.9 Display Screens (Unidirectional Flow)

- In case more than 2 parameters are programmed to be displayed, these will be displayed across multiple Screens.
- Each Screen will remain visible for the duration of the programmed Scroll Time.
- After that, the next Screen will be displayed.

Enabled: Flow Rate, Total & Velocity

Enabled: only Flow Rate, Total

999999.999 m3/h 999999999.9 m3/h

Enabled: only Flow Rate, Velocity

999999.999 m3/h 9.999 m/s

Enabled: only Flow Rate

99999.999 m3/h

Enabled: only Velocity, Total

9.999 m/s 99999.999 m3/h

Enabled: only Total

99999999.9 m3

Enabled: only Velocity

9.999 m/s

5.2.10 Display Screens (Bidirectional Flow)

- In case more than 2 parameters are programmed to be displayed, these will be displayed across multiple Screens. Each Screen will remain visible for the duration of the programmed Scroll Time.
- After that, the next Screen will be displayed.

*Note: Indicated polarity of flow rate and velocity depends on actual flow direction.

5.2.11 Communication Settings

5.2.12 Relay Output Settings

5.2.13 Pulse Output Settings

For Pulse Width value options refer to the Specification chapter

5.2.14 Digital Input Settings

5.2.15 Analog Output Settings

5.2.16 Diagnostics Mode

Applicable if Digital Input(s) enabled

5.2.17 Batching Mode

\triangle Resolution depends on the set Totaliser Resolution

Batch	Fail safe enabled	Fail safe disabled
Start	On (contact between Pole & NO)	Off (contact between Pole & NC)
Over	Off (contact between Pole & NC)	On (contact between Pole & NO)

5.2.18 Calibration Mode

5.3 Operational Precautions

- Keep the cover of the Transmitter well fastened.
- Take care of the O-ring or gasket to avoid damage and fixed adequately for effective sealing.
- Keep the cable gland nut tight and ensure that the cable is gripped uniformly around its circumference. This will prevent any ingress of moisture or water into the Transmitter.

- To avoid damage to the Flow Tube's lining, ensure that the process liquid is free of any abrasives at flow velocities that are close to the maximum flow rates. In case the liquid has abrasives, restrict the flow velocity to a value below 3 m/s.
- Measure and ensure that there is no source of a strong magnetic field near the Flow Tube. Such magnetic fields can interfere and alter the output signal of the Flow Meter.
- Follow these steps to check that the proper zero flow condition:
 - Stop the flow through the Flow Tube by shutting off the valve, which is immediately at the downstream of the Flow Tube.
 - $_{\odot}$ $\,$ This way, the Flow Tube will remain filled with liquid.
 - $_{\odot}$ $\,$ The display must be within 0.075% of the FS value.
- If the output is not within the above values, the possible causes can be:
 - Improper grounding.
 - Shifted zero will require Calibration.
 - Contaminated electrodes.

Note that the pulsed-DC technique of exciting the field coils ensures a stable zero or auto zeroing. It makes sure all other requirements are satisfied.

• The flowing liquid must be free of any gas bubbles as the presence of bubbles causes falsified output.

5.4 Battery Setup

The interface includes an easily readable LCD screen consisting of a parameter display area, measuring units and information icons. The menu can be operated by using a magnet, directed at the magnet sensing area, as shown in figure 17.

Fig 17: Operate Menu by Bringing Magnet Close or Touching the Sensing Area

The display is normally in the Run Mode and indicates the flow rate along with few other parameters and alerts if any. You can navigate the menu by using a bar magnet which

activates an internal magnetically sensitive keys located below the sensing areas (see figure 18).

Fig 18: Magnet Sensing Area to Operate Internal Keys

Кеу	Function
MENU	Initiate the Parameter Setting mode Enable shifting the cursor along with UP/DOWN
ENTER	Select an option or save a numerical value Long press to exit Config Menu
UP	Move forward from one option to the next Increment a numerical value
DOWN	Move backward from one option to the previous Decrement a numerical value

6 Run Mode Line Powered

6.1 Run Mode

- \triangle Polarity indication only for Bidirectional flow setting
- Diagnostic messages in place of flow rate and velocity value
 - a. Empty pipe
 - b. High Flow (> 39 ft/s)

6.2 Info Mode

⚠ 'Tek-Flux 1400B' displayed in case of model Tek-Flux 1400B

Applicable when communication is enabled

6.3 Clear Mode

- \triangle Password = 0741
- ightarrow Totalizer value can be cleared
- A ON and RUN hours, and power interruption count can be cleared

6.4 Program Mode

 \triangle If batching is enabled

6.5 Configuration Mode

- \triangle Password = 4321
- In Read Mode, no parameter setting permitted
- Always ON 1/5/10/30/60/120 MIN

6.6 Flow Setting

(For DN Size, Flow & Totalizer Unit options refer to the Specification chapter)

6.7 Display Setting

6.8 Display Screens: Unidirectional Flow

In case more than 2 parameters are programmed to be displayed, these will be displayed across multiple Screens. Each Screen will remain visible for the duration of the programmedScroll Time. After that, the next Screen will be displayed.

7 Run Mode Battery Powered

7.1 Run Mode

The Run Mode screens display the flow rate on all the screens in large sized font and other parameters in a smaller font in the bottom row. Use the UP/DOWN keys to navigate.

7.2 Alerts

Certain alerts are displayed via icons as shown below.

7.3 Setting value and shifting cursor for Battery Powered

Certain parameters require entering a numerical value. For this, follow the steps as sequenced in the example below.

7.4 Entering Config Menu for Battery Powered

To set or view the different parameters, you must first enter the Config Menu. For this, follow the steps as sequenced below.

7.5 Config Menu for Battery Powered

Use this menu to set or view the different parameters. Use the UP/DOWN keys to move from one parameter to the next.

Note: You can exit the Menu from any sub-menu level by long-pressing the ENTER key.

Config Menu continued ... for Battery Powered

Use this menu to set or view the different parameters. Use the UP/DOWN keys to move from one parameter to the next.

Config Menu continued ... for Battery Powered

Use this menu to set or view the different parameters. Use the UP/DOWN keys to move from one parameter to the next.

Options / Valid range

7.6 Flow Zero

If the meter indicates a small non-zero flow rate at zero flow conditions you can adjust this to indicate zero via the Flow Zero menu as shown below.

*Note: Increasing the Factor decreases the Flow Count and vice-versa.

7.7 Zero Calibration for Battery Powered

Ensure that the Flow Tube bore is full of the process liquid and that it is stable, and the flow is zero. Then initiate the sequence as shown below.

8 Menu Tree for Battery Powered

9 Troubleshooting

Quick Checks

Table 3: Troubleshooting

No.	Problem observed	Possible cause	Corrective action		
1	Transmitter does not power up.	a. Fuse has blown.b. The mains power supply is not as specified.	 a. Ensure that the mains power supply is within ±15% of the value specified on the b. Nameplate. c. Replace the fuse if found to be blown. 		
2	The output current is not 4 mA DC under zero flow condition.	 a. The flow is not essentially zero. There exists a small amount of trickle flow. b. Grounding is not proper. 	 a. Force the flow to zero by completely shutting off the downside valve and check. b. Correct the grounding. 		
3	Output current is not steady.	 a. Flow itself is not steady but pulsating or irregular. b. Gas or air bubbles are present in the flowing liquid. c. The flowing liquid has a varying conductivity. d. Grounding is not proper. 	 a. Allow the flow to stabilize and then check. b. Identify and eliminate the cause of the air or gas bubbles or wait until liquid is free of bubbles. c. Allow to flowing liquid to attain a stable conductivity. d. Correct the grounding. 		
4	Output current not proportional to flow.	Qmax values may not be set properly.	Set the Qmax to values correctly corresponding to 20 mA.		
5	Display alternates between High Flow and Empty pipe.	Grounding is not proper.	Correct the grounding.		
6	Modbus communication issues	a. Wiring is not correct.b. Communication settings are incorrectly set.	a. Correct wiring as per diagram.b. Set correct communication parameters		
7	Pulse is not available.	a. Pulse settings are not correct.b. Pulse type is not known.	a. Correct Pulse settings in respective DO section.b. Check your ordering for Active or Open Collector Output.		

10 Annexure

10.1 Annexure 1: Modbus Table

The Flow Meter supports Modbus RTU protocol over RS485. The following parameters are available:

Address in Decimal	Data Type	Data Size	Register Name	Register Description
101		8	Velocity	Flow Velocity (m/s of f/s depends upon unit Selected)
105	Double	8	Flow Rate	Flow Rate Positive or Negative
109		8	Pos Totalizer	Positive Totalizer
113		8	Neg Totalizer	Negative Totalizer
117	Ulong	4	Flow Direction	1= Forward Flow 2= Reverse Flow

Table 4: Modbus Table

Tek-Trol is a fully owned subsidiary of TEKMATION LLC. We offer our customers a comprehensive range of products and solutions for process, power and oil & gas industries. Tek-Trol provides process measurement and control products for Flow, Level, Temperature & Pressure Measurement, Control Valves & Analyzer systems. We are present in 15 locations globally and are known for our knowledge, innovative solutions, reliable products and global presence.